Modeling and Mitigating Errors in Belief Propagation for Distributed Detection

We study the behavior of the belief-propagation (BP) algorithm affected by erroneous data exchange in a wireless sensor network (WSN). The WSN conducts a distributed multidimensional hypothesis test over binary random variables. The joint statistical behavior of the sensor observations is modeled by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2021-05, Vol.69 (5), p.3286-3297
Hauptverfasser: Abdi, Younes, Ristaniemi, Tapani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the behavior of the belief-propagation (BP) algorithm affected by erroneous data exchange in a wireless sensor network (WSN). The WSN conducts a distributed multidimensional hypothesis test over binary random variables. The joint statistical behavior of the sensor observations is modeled by a Markov random field whose parameters are used to build the BP messages exchanged between the sensing nodes. Through linearization of the BP message-update rule, we analyze the behavior of the resulting erroneous decision variables and derive closed-form relationships that describe the impact of stochastic errors on the performance of the BP algorithm. We then develop a decentralized distributed optimization framework to enhance the system performance by mitigating the impact of errors via a distributed linear data-fusion scheme. Finally, we compare the results of the proposed analysis with the existing works and visualize, via computer simulations, the performance gain obtained by the proposed optimization.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2021.3056679