Uplink Precoding Optimization for NOMA Cellular-Connected UAV Networks

Unmanned aerial vehicles (UAVs) are playing an important role in wireless networks, due to their cost effectiveness and flexible deployment. Particularly, integrating UAVs into existing cellular networks has great potential to provide high-rate and ultra-reliable communications. In this paper, we in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2020-02, Vol.68 (2), p.1271-1283
Hauptverfasser: Pang, Xiaowei, Gui, Guan, Zhao, Nan, Zhang, Weile, Chen, Yunfei, Ding, Zhiguo, Adachi, Fumiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unmanned aerial vehicles (UAVs) are playing an important role in wireless networks, due to their cost effectiveness and flexible deployment. Particularly, integrating UAVs into existing cellular networks has great potential to provide high-rate and ultra-reliable communications. In this paper, we investigate the uplink transmission in a cellular network from a UAV using non-orthogonal multiple access (NOMA) and from ground users to base stations (BSs). Specifically, we aim to maximize the sum rate of uplink from UAV to BSs in a specific band as well as from the UAV's co-channel users to their associated BSs via optimizing the precoding vectors at the multi-antenna UAV. To mitigate the interference, we apply successive interference cancellation (SIC) not only to the UAV-connected BSs, but also to the BSs associated with ground users in the same band. The precoding optimization problem with constraints on the SIC decoding and the transmission rate requirements is formulated, which is non-convex. Thus, we introduce auxiliary variables and apply approximations based on the first-order Taylor expansion to convert it into a second-order cone programming. Accordingly, an iterative algorithm is designed to obtain the solution to the problem with low complexity. Numerical results are presented to demonstrate the effectiveness of our proposed scheme.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2019.2954136