Differential Quadrature Spatial Modulation

Quadrature spatial modulation (QSM) is a recent multiple input multiple output transmission scheme that attracted significant research interest. QSM expands the spatial constellation diagram of spatial modulation (SM) to enhance the overall spectral efficiency while retaining all SM inherent advanta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2017-09, Vol.65 (9), p.3810-3817
Hauptverfasser: Mesleh, Raed, Althunibat, Saud, Younis, Abdelhamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quadrature spatial modulation (QSM) is a recent multiple input multiple output transmission scheme that attracted significant research interest. QSM expands the spatial constellation diagram of spatial modulation (SM) to enhance the overall spectral efficiency while retaining all SM inherent advantages. In this paper, differential QSM (DQSM) is proposed to alleviate the requirement of channel knowledge at the receiver side. Receiver channel knowledge is crucial in QSM as part of the data are encoded in the Euclidean difference among different channel paths. Time dimension and orthogonal in-phase and quadrature spatial dimensions of QSM are exploited to facilitate differential modulation and demodulation while maintaining single RF-chain transmitters. In addition, a systematic design of the transmission blocks is provided for arbitrary number of transmit and receive antennas. Besides, a novel analytical framework for analyzing the performance of DQSM is derived and shown to predict accurate performance for differential SM and differential space shift keying systems as well. Analytical and simulation results are shown to match closely over a wide range of signal to noise ratios and for different system parameters.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2017.2712720