Beam Selection in mm-Wave Multiuser MIMO Systems Using Compressive Sensing

In this paper, we study beam selection for millimeter-wave (mm-wave) multiuser multiple input multiple output (MIMO) systems where a base station (BS) and users are equipped with antenna arrays. Exploiting a certain sparsity of mm-wave channels, a low-complexity beam selection method for beamforming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2015-08, Vol.63 (8), p.2936-2947
1. Verfasser: Choi, Jinho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study beam selection for millimeter-wave (mm-wave) multiuser multiple input multiple output (MIMO) systems where a base station (BS) and users are equipped with antenna arrays. Exploiting a certain sparsity of mm-wave channels, a low-complexity beam selection method for beamforming by low-cost analog beamformers is derived. It is shown that beam selection can be carried out without explicit channel estimation using the notion of compressive sensing (CS). Due to various reasons (e.g., the background noise and interference), some users may choose the same BS beam, which results in high inter-user interference. To overcome this problem, we further consider BS beam selection by users. Through simulations, we show that the performance gap between the proposed approach and the optimal beamforming approach, which requires full channel state information (CSI), becomes narrower for a larger number of users at a moderate/low signal-to-noise ratio (SNR). Since the optimal beamforming approach is difficult to be used due to prohibitively high computational complexity for large antenna arrays with a large number of users, the proposed approach becomes attractive for BSs and users in mm-wave systems where large antenna arrays can be employed.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2015.2449860