A Distributed Power Allocation Scheme for Sum-Rate Maximization on Cognitive GMACs
This paper considers a distributed power allocation scheme for sum-rate-maximization under cognitive Gaussian multiple access channels (GMACs), where primary users and secondary users may communicate under mutual interference with the Gaussian noise. Formulating the problem as a standard nonconvex q...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2013-01, Vol.61 (1), p.248-256 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers a distributed power allocation scheme for sum-rate-maximization under cognitive Gaussian multiple access channels (GMACs), where primary users and secondary users may communicate under mutual interference with the Gaussian noise. Formulating the problem as a standard nonconvex quadratically constrained quadratic problem (QCQP) provides a simple distributed method to find a solution using iterative Jacobian method instead of using centralized schemes. A totally asynchronous distributed power allocation for sum-rate maximization on cognitive GMACs is suggested. Simulation results show that this distributed algorithm for power allocation converges to a fixed point and the solution achieves almost the same performance as the exhaustive search. |
---|---|
ISSN: | 0090-6778 1558-0857 1558-0857 |
DOI: | 10.1109/TCOMM.2013.010913.110090 |