Dynamic Integration using Sampling in Fading Channels
In this paper, we demonstrate that the sampling property of a delta function can be used to quantify integration dynamically. The proposed approach reduces integration to a sampling. The sampling point is obtained in terms of a constant or fading parameter. We illustrate an example using Rayleigh fa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2012-10, Vol.60 (10), p.2768-2775 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we demonstrate that the sampling property of a delta function can be used to quantify integration dynamically. The proposed approach reduces integration to a sampling. The sampling point is obtained in terms of a constant or fading parameter. We illustrate an example using Rayleigh fading channel. We investigate the dynamic behavior of the sampling error probability, relative error and sampling point error of the proposed integration. We extend the result to the general order rectangular QAM with Nakagami-n fading. The significance of the proposed method is that the dynamic integration can be used to find integrals with no available antiderivative. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/TCOMM.2012.080212.110194A |