Dynamic NE Seeking for Multi-Integrator Networked Agents With Disturbance Rejection
In this paper, we consider game problems played by (multi)-integrator agents, subject to external disturbances. We propose Nash equilibrium seeking dynamics based on gradient-play, augmented with a dynamic internal-model based component, which is a reduced-order observer of the disturbance. We consi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control of network systems 2020-03, Vol.7 (1), p.129-139 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider game problems played by (multi)-integrator agents, subject to external disturbances. We propose Nash equilibrium seeking dynamics based on gradient-play, augmented with a dynamic internal-model based component, which is a reduced-order observer of the disturbance. We consider single-, double-, and extensions to multi-integrator agents, in a partial-information setting, where agents have only partial knowledge on the others' decisions over a network. The lack of global information is offset by each agent maintaining an estimate of the others' states, based on local communication with its neighbors. Each agent has an additional dynamic component that drives its estimates to the consensus subspace. In all cases, we show convergence to the Nash equilibrium irrespective of disturbances. Our proofs leverage input-to-state stability under strong monotonicity of the pseudo-gradient and Lipschitz continuity of the extended pseudo-gradient. |
---|---|
ISSN: | 2325-5870 2325-5870 2372-2533 |
DOI: | 10.1109/TCNS.2019.2920590 |