A Fast Automatic Method for Deconvoluting Macro X-Ray Fluorescence Data Collected From Easel Paintings

Macro X-ray Fluorescence (MA-XRF) scanning is increasingly widely used by researchers in heritage science to analyse easel paintings as one of a suite of non-invasive imaging techniques. The task of processing the resulting MA-XRF datacube generated in order to produce individual chemical element ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational imaging 2023, Vol.9, p.649-664
Hauptverfasser: Yan, Su, Huang, Jun-Jie, Verinaz-Jadan, Herman, Daly, Nathan, Higgitt, Catherine, Dragotti, Pier Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macro X-ray Fluorescence (MA-XRF) scanning is increasingly widely used by researchers in heritage science to analyse easel paintings as one of a suite of non-invasive imaging techniques. The task of processing the resulting MA-XRF datacube generated in order to produce individual chemical element maps is called MA-XRF deconvolution. While there are several existing methods that have been proposed for MA-XRF deconvolution, they require a degree of manual intervention from the user that can affect the final results. The state-of-the-art AFRID approach can automatically deconvolute the datacube without user input, but it has a long processing time and does not exploit spatial dependency. In this paper, we propose two versions of a fast automatic deconvolution (FAD) method for MA-XRF datacubes collected from easel paintings with ADMM (alternating direction method of multipliers) and FISTA (fast iterative shrinkage-thresholding algorithm). The proposed FAD method not only automatically analyses the datacube and produces element distribution maps of high-quality with spatial dependency considered, but also significantly reduces the running time. The results generated on the MA-XRF datacubes collected from two easel paintings from the National Gallery, London, verify the performance of the proposed FAD method.
ISSN:2573-0436
2333-9403
DOI:10.1109/TCI.2023.3288343