Four-Dimensional Anisotropic Diffusion Framework With PDEs for Light Field Regularization and Inverse Problems

In this paper, we consider the problem of vector-valued regularization of light fields based on PDEs. We propose a regularization method operating in the four-dimensional (4-D) ray space that does not require prior estimation of disparity maps. The method performs a PDE-based anisotropic diffusion a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational imaging 2020, Vol.6, p.109-124
Hauptverfasser: Allain, Pierre, Guillo, Laurent, Guillemot, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the problem of vector-valued regularization of light fields based on PDEs. We propose a regularization method operating in the four-dimensional (4-D) ray space that does not require prior estimation of disparity maps. The method performs a PDE-based anisotropic diffusion along directions defined by local structures in the 4-D ray space. We analyze light field regularization in the 4-D ray space using the proposed 4-D anisotropic diffusion framework by first considering a light field toy example, i.e., a tesseract. This simple light field example allows an in-depth analysis of how each eigenvector influences the diffusion process. We then illustrate the diffusion effect for several light field processing applications: denoising, angular, and spatial interpolation, regularization for enhancing disparity estimation as well as inpainting.
ISSN:2573-0436
2333-9403
DOI:10.1109/TCI.2019.2919229