A Low Complexity Design of Reed Solomon Code Algorithm for Advanced RAID System
This paper presents a new low complexity design of Reed Solomon model, which is the key technology for RAID system advanced codec. The real-time constraint of codec leads to a heavy computational bottleneck on today's data storage devices. To overcome this problem, design analysis and optimizat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2007-05, Vol.53 (2), p.265-273 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new low complexity design of Reed Solomon model, which is the key technology for RAID system advanced codec. The real-time constraint of codec leads to a heavy computational bottleneck on today's data storage devices. To overcome this problem, design analysis and optimization of Reed Solomon code are addressed at the algorithmic level. First, the dominant calculation of spreading function is replaced with small look- , up tables. Second, a method which greatly reduces the number of multipliers in performing the multiplication operations of the codec process is proposed to reduce the RAID (Redundant Array of Inexpensive Disks) system codec complexity while maintaining the quality. Moreover, our algorithm can be expanded to correct multiple failed disks. Therefore, the failed data in disks can be recovered and system still can work as usual without broken. This technique is different from the traditional methods. The proposed design could be implemented in a real-time Reed Solomon codec RAID system with reduction of hardware complexity by 28%. A hybrid strategy considering both data layout and load of storage nodes has a 13-25% higher I/O performance than conventional RS RAID. |
---|---|
ISSN: | 0098-3063 1558-4127 |
DOI: | 10.1109/TCE.2007.381684 |