Data Augmentation for Seizure Prediction with Generative Diffusion Model

Data augmentation (DA) can significantly strengthen the electroencephalogram (EEG)-based seizure prediction methods. However, existing DA approaches are just the linear transformations of original data and cannot explore the feature space to increase diversity effectively. Therefore, we propose a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2024-10, p.1-15
Hauptverfasser: Shu, Kai, Wu, Le, Zhao, Yuchang, Liu, Aiping, Qian, Ruobing, Chen, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data augmentation (DA) can significantly strengthen the electroencephalogram (EEG)-based seizure prediction methods. However, existing DA approaches are just the linear transformations of original data and cannot explore the feature space to increase diversity effectively. Therefore, we propose a novel diffusion-based DA method called DiffEEG. DiffEEG can fully explore data distribution and generate samples with high diversity, offering extra information to classifiers. It involves two processes: the diffusion process and the denoised process. In the diffusion process, the model incrementally adds noise with different scales to EEG input and converts it into random noise. In this way, the representation of data can be learned. In the denoised process, the model utilizes learned knowledge to sample synthetic data from random noise input by gradually removing noise. The randomness of input noise and the precise representation enable the synthetic samples to possess diversity while ensuring the consistency of feature space. We compared DiffEEG with original, down-sampling, sliding windows and recombination methods, and integrated them into five representative classifiers. The experiments demonstrate the effectiveness and generality of our method. With the contribution of DiffEEG, the Multi-scale CNN achieves state-of-the-art performance, with an average sensitivity, FPR, AUC of 95.4%, 0.051/h, 0.932 on the CHB-MIT database and 93.6%, 0.121/h, 0.822 on the Kaggle database.
ISSN:2379-8920
2379-8939
DOI:10.1109/TCDS.2024.3489357