Cost-Aware Multimedia Data Allocation for Heterogeneous Memory Using Genetic Algorithm in Cloud Computing

Recent expansions of Internet-of-Things (IoT) applying cloud computing have been growing at a phenomenal rate. As one of the developments, heterogeneous cloud computing has enabled a variety of cloud-based infrastructure solutions, such as multimedia big data. Numerous prior researches have explored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2020-10, Vol.8 (4), p.1212-1222
Hauptverfasser: Gai, Keke, Qiu, Longfei, Zhao, Hui, Qiu, Meikang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent expansions of Internet-of-Things (IoT) applying cloud computing have been growing at a phenomenal rate. As one of the developments, heterogeneous cloud computing has enabled a variety of cloud-based infrastructure solutions, such as multimedia big data. Numerous prior researches have explored the optimizations of on-premise heterogeneous memories. However, the heterogeneous cloud memories are facing constraints due to the performance limitations and cost concerns caused by the hardware distributions and manipulative mechanisms. Assigning data tasks to distributed memories with various capacities is a combinatorial NP-hard problem. This paper focuses on this issue and proposes a novel approach, Cost-Aware Heterogeneous Cloud Memory Model (CAHCM), aiming to provision a high performance cloud-based heterogeneous memory service offerings. The main algorithm supporting CAHCM is Dynamic Data Allocation Advance (2DA) Algorithm that uses genetic programming to determine the data allocations on the cloud-based memories. In our proposed approach, we consider a set of crucial factors impacting the performance of the cloud memories, such as communication costs, data move operating costs, energy performance, and time constraints. Finally, we implement experimental evaluations to examine our proposed model. The experimental results have shown that our approach is adoptable and feasible for being a cost-aware cloud-based solution.
ISSN:2168-7161
2168-7161
2372-0018
DOI:10.1109/TCC.2016.2594172