Towards Efficient Resource Allocation for Heterogeneous Workloads in IaaS Clouds

Infrastructure-as-a-service (IaaS) cloud technology has attracted much attention from users who have demands on large amounts of computing resources. Current IaaS clouds provision resources in terms of virtual machines (VMs) with homogeneous resource configurations where different types of resources...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2018-01, Vol.6 (1), p.264-275
Hauptverfasser: Wei, Lei, Foh, Chuan Heng, He, Bingsheng, Cai, Jianfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infrastructure-as-a-service (IaaS) cloud technology has attracted much attention from users who have demands on large amounts of computing resources. Current IaaS clouds provision resources in terms of virtual machines (VMs) with homogeneous resource configurations where different types of resources in VMs have similar share of the capacity in a physical machine (PM). However, most user jobs demand different amounts for different resources. For instance,high-performance-computing jobs require more CPU cores while big data processing applications require more memory. The existing homogeneous resource allocation mechanisms cause resource starvation where dominant resources are starved while non-dominant resources are wasted. To overcome this issue, we propose a heterogeneous resource allocation approach, called skewness-avoidance multi-resource allocation (SAMR), to allocate resource according to diversified requirements on different types of resources. Our solution includes a VM allocation algorithm to ensure heterogeneous workloads are allocated appropriately to avoid skewed resource utilization in PMs, and a model-based approach to estimate the appropriate number of active PMs to operate SAMR. We show relatively low complexity for our model-based approach for practical operation and accurate estimation. Extensive simulation results show the effectiveness of SAMR and the performance advantages over its counterparts.
ISSN:2168-7161
2168-7161
2372-0018
DOI:10.1109/TCC.2015.2481400