Protein Domain Level Cancer Drug Targets in the Network of MAPK Pathways

Proteins in the MAPK pathways considered as potential drug targets for cancer treatment. Pathways along with the cross-talks increase their scope to view them as a network of MAPK pathways. Side effect causing targeted domains act as a proxy for drug targets due to its structural similarity and freq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2019-11, Vol.16 (6), p.2057-2065
Hauptverfasser: V.K., MD Aksam, Chandrasekaran, V. M., Pandurangan, Sundaramurthy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteins in the MAPK pathways considered as potential drug targets for cancer treatment. Pathways along with the cross-talks increase their scope to view them as a network of MAPK pathways. Side effect causing targeted domains act as a proxy for drug targets due to its structural similarity and frequent reuse of their variants. We proposed to identify non-repeatable protein domains as the drug targets to disrupt the signal transduction than targeting the whole protein. Network based approach is used to understand the contribution of 52 domains in non-hub, non-essential, and intra-pathway cancerous nodes and to identify potential drug target domains. 34 distinct domains in the cancerous proteins are playing vital roles in making cancer as a complex disease and pose challenges to identify potential drug targets. Distribution of domain families follows the power law in the network. Single promiscuous domains are contributing to the formation of hubs like Pkinease, Pkinease Tyr, and Ras. Hub nodes are positively correlated with the domain coverage and targeting them would disrupt functional properties of the proteins. EIF 4EBP, alpha Kinase, Sel1, ROKNT, and KH 1 are the domains identified as potential domain targets for the disruption of the signaling mechanism involved in cancer.
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2018.2829507