P-V-T-C equation for epoxy molding compound

The isothermal and isobaric volume shrinkage is measured by a single-plunger-type dilatometer for epoxy molding compound (EMC). This device has been found suitable for measuring volume change of thermosetting materials such as commercial EMC under isothermal and isobaric conditions. Moreover, the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components and packaging technologies 2006-03, Vol.29 (1), p.112-117
Hauptverfasser: Sheng-Jye Hwang, Yi-San Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The isothermal and isobaric volume shrinkage is measured by a single-plunger-type dilatometer for epoxy molding compound (EMC). This device has been found suitable for measuring volume change of thermosetting materials such as commercial EMC under isothermal and isobaric conditions. Moreover, the degree of cure (conversion) was determined by a differential scanning calorimetry (DSC). Combining volume change and conversion, a mathematic pressure-volume-temperature-cure (P-V-T-C) model is proposed to describe the relationship between volume shrinkage, pressure, temperature and conversion. The P-V-T-C equation can be simply expressed as VS(P,T,C)=F/sub 1/(P,T)/spl middot/C/sup F2(P,T)/. This equation can well describe historical profiles of volume shrinkage under specified isothermal and isobaric states. From the predicted results, volume shrinkage under different pressure levels in any specified temperature can be approximated as and it obeys the principle of linearity. With the help of this model, together with three-dimensional mold filling simulation, engineers will be able to predict warpage and residual stresses for a package after molding.
ISSN:1521-3331
1557-9972
DOI:10.1109/TCAPT.2005.853171