Implications of Pb-free microelectronics assembly in aerospace applications

The commercial microelectronics industry is rapidly implementing Pb-free assembly strategies and it should be mostly Pb free within the next decade. This trend is driven by existing and proposed legislation in Europe and in Japan, which has already led a number of firms (including AT&T, IBM, Mot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components and packaging technologies 2006-03, Vol.29 (1), p.60-70
Hauptverfasser: Shapiro, A.A., Bonner, J.K., Ogunseitan, O.A., Saphores, J.-D.M., Schoenung, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The commercial microelectronics industry is rapidly implementing Pb-free assembly strategies and it should be mostly Pb free within the next decade. This trend is driven by existing and proposed legislation in Europe and in Japan, which has already led a number of firms (including AT&T, IBM, Motorola, Hewlett-Packard, and Intel) to adopt Pb-free implementation programs. This is another sign that the microelectronics industry has become truly global. Following Moore's law, progress in microelectronics is brisk but not uniform: in many cases, commercial industry is ahead of the aerospace sector in technology. Progress by commercial industry, along with cost, drives the use of commercial off-the-shelf parts for military and space applications. We can thus anticipate that the U.S. aerospace industry, which is not subject to foreign legislation, will, at some point, be forced to use Pb-free components and subsystems as part of their standard business practices. In this paper, we provide a snapshot of the commercial industry trends and how they may impact electronics in the aerospace environment. Impacts will be felt in the areas of reliability, assembly methods, cost drivers, supply chain selection, and alternative materials selection. In addition, we look at different strategies for implementation. The questions we address include the following: Should companies immediately embark on a program to convert all of their electronics to Pb free? Should they phase it in instead, and if so, over what time frame? Should companies try to comply with industry Pb-free standards? What requirements should flow down to subcontractors and component suppliers? Legislation is pending in a number of states that may affect these decisions and their timing. The U.S. Environmental Protection Agency, through some university programs, is examining the implementation of Pb free as well. Finally, we present data from a portion of a recent NASA project that focuses on finding suitable alternatives to eutectic Sn-Pb solders and solder pastes and on determining suitable processing operations in assembling printed wiring boards. The world is moving toward implementation of environmentally friendly manufacturing techniques. The aerospace industry will be forced to deal with issues related to Pb-free assembly, either because of the progressive scarcity of eutectic Sn-Pb solder or because of legislation. This paper provides insights into some of the key tradeoffs that should be considered.
ISSN:1521-3331
1557-9972
DOI:10.1109/TCAPT.2005.850514