A 3-D Rotation-Based Through-Silicon via Redundancy Architecture for Clustering Faults

Three-dimensional integrated circuits (3-D ICs), which feature many benefits, such as high bandwidth and a high degree of integration, have recently received considerable attention from the semiconductor industry. However, these chips feature through-silicon vias (TSVs), which vertically connect mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2020-09, Vol.39 (9), p.1925-1934
Hauptverfasser: Cheong, Minho, Lee, Ingeol, Kang, Sungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional integrated circuits (3-D ICs), which feature many benefits, such as high bandwidth and a high degree of integration, have recently received considerable attention from the semiconductor industry. However, these chips feature through-silicon vias (TSVs), which vertically connect multiple dies, and these TSVs may fail, resulting in a decreased yield. Unfortunately, previously proposed methods to repair TSVs cannot handle certain failure patterns. For example, existing techniques cannot repair clustered TSV faults, which commonly occur in practice. Furthermore, the number of signal TSVs typically determines the number of redundant TSVs, which may result in wasteful and redundant TSVs. In this paper, a new TSV repair scheme is proposed that replaces defective TSVs with redundant TSVs by utilizing the architecture of a cube, which can replace any face with any of the other faces. Both signal TSVs and redundant TSVs are placed in the face of cube, so any faulted TSVs can be replaced with redundant TSVs. The experimental results indicate that the new method guarantees 100% coverage with any number of signal TSVs and redundant TSVs.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2019.2927485