System-Level Optimization of Accelerator Local Memory for Heterogeneous Systems-on-Chip
In modern system-on-chip architectures, specialized accelerators are increasingly used to improve performance and energy efficiency. The growing complexity of these systems requires the use of system-level design methodologies featuring high-level synthesis (HLS) for generating these components effi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2017-03, Vol.36 (3), p.435-448 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In modern system-on-chip architectures, specialized accelerators are increasingly used to improve performance and energy efficiency. The growing complexity of these systems requires the use of system-level design methodologies featuring high-level synthesis (HLS) for generating these components efficiently. Existing HLS tools, however, have limited support for the system-level optimization of memory elements, which typically occupy most of the accelerator area. We present a complete methodology for designing the private local memories (PLMs) of multiple accelerators. Based on the memory requirements of each accelerator, our methodology automatically determines an area-efficient architecture for the PLMs to guarantee performance and reduce the memory cost based on technology-related information. We implemented a prototype tool, called Mnemosyne, that embodies our methodology within a commercial HLS flow. We designed 13 complex accelerators for selected applications from two recently-released benchmark suites (Perfect and CortexSuite). With our approach we are able to reduce the memory cost of single accelerators by up to 45%. Moreover, when reusing memory IPs across accelerators, we achieve area savings that range between 17% and 55% compared to the case where the PLMs are designed separately. |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2016.2611506 |