System-Level Optimization of Accelerator Local Memory for Heterogeneous Systems-on-Chip

In modern system-on-chip architectures, specialized accelerators are increasingly used to improve performance and energy efficiency. The growing complexity of these systems requires the use of system-level design methodologies featuring high-level synthesis (HLS) for generating these components effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2017-03, Vol.36 (3), p.435-448
Hauptverfasser: Pilato, Christian, Mantovani, Paolo, Di Guglielmo, Giuseppe, Carloni, Luca P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern system-on-chip architectures, specialized accelerators are increasingly used to improve performance and energy efficiency. The growing complexity of these systems requires the use of system-level design methodologies featuring high-level synthesis (HLS) for generating these components efficiently. Existing HLS tools, however, have limited support for the system-level optimization of memory elements, which typically occupy most of the accelerator area. We present a complete methodology for designing the private local memories (PLMs) of multiple accelerators. Based on the memory requirements of each accelerator, our methodology automatically determines an area-efficient architecture for the PLMs to guarantee performance and reduce the memory cost based on technology-related information. We implemented a prototype tool, called Mnemosyne, that embodies our methodology within a commercial HLS flow. We designed 13 complex accelerators for selected applications from two recently-released benchmark suites (Perfect and CortexSuite). With our approach we are able to reduce the memory cost of single accelerators by up to 45%. Moreover, when reusing memory IPs across accelerators, we achieve area savings that range between 17% and 55% compared to the case where the PLMs are designed separately.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2016.2611506