Through Silicon Via Aware Design Planning for Thermally Efficient 3-D Integrated Circuits

3-D integrated circuits (3-D ICs) offer performance advantages due to their increased bandwidth and reduced wire-length enabled by through-silicon-via structures (TSVs). Traditionally TSVs have been considered to improve the thermal conductivity in the vertical direction. However, the lateral therma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2013-09, Vol.32 (9), p.1335-1346
Hauptverfasser: Yibo Chen, Kursun, Eren, Motschman, Dave, Johnson, Charles, Yuan Xie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3-D integrated circuits (3-D ICs) offer performance advantages due to their increased bandwidth and reduced wire-length enabled by through-silicon-via structures (TSVs). Traditionally TSVs have been considered to improve the thermal conductivity in the vertical direction. However, the lateral thermal blockage effect becomes increasingly important for TSV via farms (a cluster of TSV vias used for signal bus connections between layers) because the TSV size and pitch continue to scale in μm range and the metal to insulator ratio becomes smaller. Consequently, dense TSV farms can create lateral thermal blockages in thinned silicon substrate and exacerbate the local hotspots. In this paper, we propose a thermal-aware via farm placement technique for 3-D ICs to minimize lateral heat blockages caused by dense signal bus TSV structures. By incorporating thermal conductivity profile of via farm blocks in the design flow and enabling placement/aspect ratio optimization, the corresponding hotspots can be minimized within the wire-length and area constraints.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2013.2261120