Multiobjective Microarchitectural Floorplanning for 2-D and 3-D ICs
This paper presents the first multiobjective microarchitectural floorplanning algorithm for high-performance processors implemented in two-dimensional (2-D) and three-dimensional (3-D) ICs. The floorplanner takes a microarchitectural netlist and determines the dimension as well as the placement of t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2007-01, Vol.26 (1), p.38-52 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the first multiobjective microarchitectural floorplanning algorithm for high-performance processors implemented in two-dimensional (2-D) and three-dimensional (3-D) ICs. The floorplanner takes a microarchitectural netlist and determines the dimension as well as the placement of the functional modules into single- or multiple-device layers while simultaneously achieving high performance and thermal reliability. The traditional design objectives such as area and wirelength are also considered. The 3-D floorplanning algorithm considers the following 3-D-specific issues: vertical overlap optimization and bonding-aware layer partitioning. The hybrid floorplanning approach combines linear programming and simulated annealing, which is shown to be very effective in obtaining high-quality solutions in a short runtime under multiobjective goals. This paper provides comprehensive experimental results on making tradeoffs among performance, thermal, area, and wirelength for both 2-D and 3-D ICs |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2006.883925 |