Minimizing the number of paths in BDDs: Theory and algorithm

The complexity of circuit and systems design increases rapidly. Therefore, a main focus of research in the area of electronic-design automation are efficient algorithms and data structures. Among these, binary decision diagrams (BDDs) have been used in a wide variety of applications and were intensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2006-01, Vol.25 (1), p.4-11
Hauptverfasser: Fey, G., Drechsler, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complexity of circuit and systems design increases rapidly. Therefore, a main focus of research in the area of electronic-design automation are efficient algorithms and data structures. Among these, binary decision diagrams (BDDs) have been used in a wide variety of applications and were intensively studied from a theoretical point of view. But mostly, when complexity issues were considered, only the number of nodes in a BDD has been analyzed. Here, we study minimizing the number of paths in BDDs from a theoretical and a practical point of view. Connections to different areas in computer-aided design are outlined, theoretical studies are carried out, and an algorithm to minimize the number of paths is presented. Experimental results show the efficiency of the algorithm.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2005.852662