Minimizing the number of paths in BDDs: Theory and algorithm
The complexity of circuit and systems design increases rapidly. Therefore, a main focus of research in the area of electronic-design automation are efficient algorithms and data structures. Among these, binary decision diagrams (BDDs) have been used in a wide variety of applications and were intensi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2006-01, Vol.25 (1), p.4-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The complexity of circuit and systems design increases rapidly. Therefore, a main focus of research in the area of electronic-design automation are efficient algorithms and data structures. Among these, binary decision diagrams (BDDs) have been used in a wide variety of applications and were intensively studied from a theoretical point of view. But mostly, when complexity issues were considered, only the number of nodes in a BDD has been analyzed. Here, we study minimizing the number of paths in BDDs from a theoretical and a practical point of view. Connections to different areas in computer-aided design are outlined, theoretical studies are carried out, and an algorithm to minimize the number of paths is presented. Experimental results show the efficiency of the algorithm. |
---|---|
ISSN: | 0278-0070 1937-4151 |
DOI: | 10.1109/TCAD.2005.852662 |