On a conjecture of J. L. C. Sanz and T. S. Huang

In [1] J. L. C. Sanz and T. S. Huang conjectured that the DFT implementation of the Papoulis-Gerchberg algorithm for the extrapolation of band-limited signals does approach the continuous extrapolation. In this respect we prove a result on the approximation of band-limited functions by trigonometric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on acoustics, speech, and signal processing speech, and signal processing, 1985-10, Vol.33 (5), p.1338-1341
Hauptverfasser: Schlebusch, H.-J., Splettstosser, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In [1] J. L. C. Sanz and T. S. Huang conjectured that the DFT implementation of the Papoulis-Gerchberg algorithm for the extrapolation of band-limited signals does approach the continuous extrapolation. In this respect we prove a result on the approximation of band-limited functions by trigonometric polynomials, simultaneously increasing its degree and the period-length. This will imply that the above conjecture is indeed true.
ISSN:0096-3518
DOI:10.1109/TASSP.1985.1164678