On a conjecture of J. L. C. Sanz and T. S. Huang
In [1] J. L. C. Sanz and T. S. Huang conjectured that the DFT implementation of the Papoulis-Gerchberg algorithm for the extrapolation of band-limited signals does approach the continuous extrapolation. In this respect we prove a result on the approximation of band-limited functions by trigonometric...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on acoustics, speech, and signal processing speech, and signal processing, 1985-10, Vol.33 (5), p.1338-1341 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In [1] J. L. C. Sanz and T. S. Huang conjectured that the DFT implementation of the Papoulis-Gerchberg algorithm for the extrapolation of band-limited signals does approach the continuous extrapolation. In this respect we prove a result on the approximation of band-limited functions by trigonometric polynomials, simultaneously increasing its degree and the period-length. This will imply that the above conjecture is indeed true. |
---|---|
ISSN: | 0096-3518 |
DOI: | 10.1109/TASSP.1985.1164678 |