Bayesian Estimation of PLDA in the Presence of Noisy Training Labels, With Applications to Speaker Verification
This paperpresents a Bayesian framework for estimating a Probabilistic Linear Discriminant Analysis (PLDA) model in the presence of noisy labels. True class labels are interpreted as latent random variables, which are transmitted through a noisy channel, and received as observed speaker labels. The...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2022, Vol.30, p.414-428 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paperpresents a Bayesian framework for estimating a Probabilistic Linear Discriminant Analysis (PLDA) model in the presence of noisy labels. True class labels are interpreted as latent random variables, which are transmitted through a noisy channel, and received as observed speaker labels. The labeling process is modeled as a Discrete Memoryless Channel (DMC). PLDA hyperparameters are interpreted as random variables, and their joint posterior distribution is derived using mean-field Variational Bayes, allowing maximum a posteriori (MAP) estimates of the PLDA model parameters to be determined. The proposed solution, referred to as VB-MAP, is presented as a general framework, but is studied in the context of speaker verification, and a variety of use cases are discussed. Specifically, VB-MAP can be used for PLDA estimation with unreliable labels, unsupervised PLDA estimation, and to infer the reliability of a PLDA training set. Experimental results show the proposed approach to provide significant performance improvements on a variety of NIST Speaker Recognition Evaluation (SRE) tasks, both for data sets with simulated mislabels, and for data sets with naturally occurring missing or unreliable labels. |
---|---|
ISSN: | 2329-9290 2329-9304 |
DOI: | 10.1109/TASLP.2021.3130980 |