Unsupervised Discovery of Structured Acoustic Tokens With Applications to Spoken Term Detection

In this paper, we compare two paradigms for unsupervised discovery of structured acoustic tokens directly from speech corpora without any human annotation. The multigranular paradigm seeks to capture all available information in the corpora with multiple sets of tokens for different model granularit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2018-02, Vol.26 (2), p.394-405
Hauptverfasser: Chung, Cheng-Tao, Lee, Lin-Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we compare two paradigms for unsupervised discovery of structured acoustic tokens directly from speech corpora without any human annotation. The multigranular paradigm seeks to capture all available information in the corpora with multiple sets of tokens for different model granularities. The hierarchical paradigm attempts to jointly learn several levels of signal representations in a hierarchical structure. The two paradigms are unified within a theoretical framework in this paper. Query-by-example spoken term detection (QbE-STD) experiments on the query by example search on speech task dataset of MediaEval 2015 verifies the competitiveness of the acoustic tokens. The enhanced relevance score proposed in this work improves both paradigms for the task of QbE-STD. We also list results on the ABX evaluation task of the Zero Resource Challenge 2015 for comparison of the paradigms.
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2017.2778948