Maximum Likelihood Decision Fusion for Weapon Classification in Wireless Acoustic Sensor Networks
Gunshot acoustic analysis is a field with many practical applications, but due to the multitude of factors involved in the generation of the acoustic signature of firearms, it is not a trivial task. The main problem arises with the strong spatial dependence shown by the recorded waveforms even when...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2017-06, Vol.25 (6), p.1172-1182 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gunshot acoustic analysis is a field with many practical applications, but due to the multitude of factors involved in the generation of the acoustic signature of firearms, it is not a trivial task. The main problem arises with the strong spatial dependence shown by the recorded waveforms even when dealing with the same weapon. However, this can be lessen by using a spatially diverse receiver such as a wireless acoustic sensor network. In this work, we address multichannel acoustic weapon classification using spatial information and a novel decision fusion rule based on it. We propose a fusion rule based on maximum likelihood estimation that takes advantage of diverse classifier ensembles to improve upon classic decision fusion techniques. Classifier diversity comes from a spatial segmentation that is performed locally at each node. The same segmentation is also used to improve the accuracy of the local classification by means of a divide and conquer approach. |
---|---|
ISSN: | 2329-9290 2329-9304 |
DOI: | 10.1109/TASLP.2017.2690579 |