A Multichannel Audio Denoising Formulation Based on Spectral Sparsity

We consider the estimation of an audio source from multiple noisy observations, where the correlation between noise in the different observations is low. We propose a two-stage method for this estimation problem. The method does not require any information about noise and assumes that the signal of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2015-12, Vol.23 (12), p.2272-2285
1. Verfasser: Bayram, Ilker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2285
container_issue 12
container_start_page 2272
container_title IEEE/ACM transactions on audio, speech, and language processing
container_volume 23
creator Bayram, Ilker
description We consider the estimation of an audio source from multiple noisy observations, where the correlation between noise in the different observations is low. We propose a two-stage method for this estimation problem. The method does not require any information about noise and assumes that the signal of interest has a sparse time-frequency representation. The first stage uses this assumption to obtain the best linear combination of the observations. The second stage estimates the amount of remaining noise and applies a post-filter to further enhance the reconstruction. We discuss the optimality of this method under a specific model and demonstrate its usefulness on synthetic and real data.
doi_str_mv 10.1109/TASLP.2015.2479042
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TASLP_2015_2479042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7268852</ieee_id><sourcerecordid>10_1109_TASLP_2015_2479042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-8d72eac6ef55f0ac048f5e983c538d80454ad5929f3303c043db847e38a6e3db3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsNT-Ab3kD6TOfiW7x1jbKkQUWs9h3Z3oSpqU3eTQf29qq6d5MLxheITcUphTCvp-W2zKtzkDKudM5BoEuyATxplONQdx-cdMwzWZxfgNABRyrXMxIcsieRma3tsv07bYJMXgfJc8Ytv56NvPZNWF3dCY3ndt8mAiumSEzR5tH0wzggnR94cbclWbJuLsPKfkfbXcLp7S8nX9vCjK1DKq-lS5nKGxGdZS1mAsCFVL1IpbyZVTIKQwTo6P1pwDH9fcfSiRI1cmw5H5lLDTXRu6GAPW1T74nQmHikJ1bFH9tqiOLapzi1G6O0keEf-FnGVKScZ_ANhWWtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Multichannel Audio Denoising Formulation Based on Spectral Sparsity</title><source>IEEE Electronic Library (IEL)</source><creator>Bayram, Ilker</creator><creatorcontrib>Bayram, Ilker</creatorcontrib><description>We consider the estimation of an audio source from multiple noisy observations, where the correlation between noise in the different observations is low. We propose a two-stage method for this estimation problem. The method does not require any information about noise and assumes that the signal of interest has a sparse time-frequency representation. The first stage uses this assumption to obtain the best linear combination of the observations. The second stage estimates the amount of remaining noise and applies a post-filter to further enhance the reconstruction. We discuss the optimality of this method under a specific model and demonstrate its usefulness on synthetic and real data.</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2015.2479042</identifier><identifier>CODEN: ITASD8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic measurements ; Array signal processing ; Beamforming ; Minimization ; multichannel audio denoising ; Noise measurement ; Noise reduction ; post-filter ; Random variables ; sparsity ; spectrogram ; Spectrograms ; sufficient statistic ; Time-frequency analysis ; uniformly minimum variance unbiased (UMVU) estimator</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2015-12, Vol.23 (12), p.2272-2285</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-8d72eac6ef55f0ac048f5e983c538d80454ad5929f3303c043db847e38a6e3db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7268852$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7268852$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bayram, Ilker</creatorcontrib><title>A Multichannel Audio Denoising Formulation Based on Spectral Sparsity</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>We consider the estimation of an audio source from multiple noisy observations, where the correlation between noise in the different observations is low. We propose a two-stage method for this estimation problem. The method does not require any information about noise and assumes that the signal of interest has a sparse time-frequency representation. The first stage uses this assumption to obtain the best linear combination of the observations. The second stage estimates the amount of remaining noise and applies a post-filter to further enhance the reconstruction. We discuss the optimality of this method under a specific model and demonstrate its usefulness on synthetic and real data.</description><subject>Acoustic measurements</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Minimization</subject><subject>multichannel audio denoising</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>post-filter</subject><subject>Random variables</subject><subject>sparsity</subject><subject>spectrogram</subject><subject>Spectrograms</subject><subject>sufficient statistic</subject><subject>Time-frequency analysis</subject><subject>uniformly minimum variance unbiased (UMVU) estimator</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQQBdRsNT-Ab3kD6TOfiW7x1jbKkQUWs9h3Z3oSpqU3eTQf29qq6d5MLxheITcUphTCvp-W2zKtzkDKudM5BoEuyATxplONQdx-cdMwzWZxfgNABRyrXMxIcsieRma3tsv07bYJMXgfJc8Ytv56NvPZNWF3dCY3ndt8mAiumSEzR5tH0wzggnR94cbclWbJuLsPKfkfbXcLp7S8nX9vCjK1DKq-lS5nKGxGdZS1mAsCFVL1IpbyZVTIKQwTo6P1pwDH9fcfSiRI1cmw5H5lLDTXRu6GAPW1T74nQmHikJ1bFH9tqiOLapzi1G6O0keEf-FnGVKScZ_ANhWWtQ</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Bayram, Ilker</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201512</creationdate><title>A Multichannel Audio Denoising Formulation Based on Spectral Sparsity</title><author>Bayram, Ilker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-8d72eac6ef55f0ac048f5e983c538d80454ad5929f3303c043db847e38a6e3db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic measurements</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Minimization</topic><topic>multichannel audio denoising</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>post-filter</topic><topic>Random variables</topic><topic>sparsity</topic><topic>spectrogram</topic><topic>Spectrograms</topic><topic>sufficient statistic</topic><topic>Time-frequency analysis</topic><topic>uniformly minimum variance unbiased (UMVU) estimator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayram, Ilker</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bayram, Ilker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multichannel Audio Denoising Formulation Based on Spectral Sparsity</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2015-12</date><risdate>2015</risdate><volume>23</volume><issue>12</issue><spage>2272</spage><epage>2285</epage><pages>2272-2285</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASD8</coden><abstract>We consider the estimation of an audio source from multiple noisy observations, where the correlation between noise in the different observations is low. We propose a two-stage method for this estimation problem. The method does not require any information about noise and assumes that the signal of interest has a sparse time-frequency representation. The first stage uses this assumption to obtain the best linear combination of the observations. The second stage estimates the amount of remaining noise and applies a post-filter to further enhance the reconstruction. We discuss the optimality of this method under a specific model and demonstrate its usefulness on synthetic and real data.</abstract><pub>IEEE</pub><doi>10.1109/TASLP.2015.2479042</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-9290
ispartof IEEE/ACM transactions on audio, speech, and language processing, 2015-12, Vol.23 (12), p.2272-2285
issn 2329-9290
2329-9304
language eng
recordid cdi_crossref_primary_10_1109_TASLP_2015_2479042
source IEEE Electronic Library (IEL)
subjects Acoustic measurements
Array signal processing
Beamforming
Minimization
multichannel audio denoising
Noise measurement
Noise reduction
post-filter
Random variables
sparsity
spectrogram
Spectrograms
sufficient statistic
Time-frequency analysis
uniformly minimum variance unbiased (UMVU) estimator
title A Multichannel Audio Denoising Formulation Based on Spectral Sparsity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multichannel%20Audio%20Denoising%20Formulation%20Based%20on%20Spectral%20Sparsity&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Bayram,%20Ilker&rft.date=2015-12&rft.volume=23&rft.issue=12&rft.spage=2272&rft.epage=2285&rft.pages=2272-2285&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASD8&rft_id=info:doi/10.1109/TASLP.2015.2479042&rft_dat=%3Ccrossref_RIE%3E10_1109_TASLP_2015_2479042%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7268852&rfr_iscdi=true