A Multichannel Audio Denoising Formulation Based on Spectral Sparsity

We consider the estimation of an audio source from multiple noisy observations, where the correlation between noise in the different observations is low. We propose a two-stage method for this estimation problem. The method does not require any information about noise and assumes that the signal of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2015-12, Vol.23 (12), p.2272-2285
1. Verfasser: Bayram, Ilker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the estimation of an audio source from multiple noisy observations, where the correlation between noise in the different observations is low. We propose a two-stage method for this estimation problem. The method does not require any information about noise and assumes that the signal of interest has a sparse time-frequency representation. The first stage uses this assumption to obtain the best linear combination of the observations. The second stage estimates the amount of remaining noise and applies a post-filter to further enhance the reconstruction. We discuss the optimality of this method under a specific model and demonstrate its usefulness on synthetic and real data.
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2015.2479042