Bounded Conditional Mean Imputation with Observation Uncertainties and Acoustic Model Adaptation

Automatic speech recognition systems use noise compensation and acoustic model adaptation to increase robustness towards speaker and environmental variation. The current work focuses on noise compensation with bounded conditional mean imputation (BCMI). BCMI approaches are missing-data methods which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2015-07, Vol.23 (7), p.1198-1208
Hauptverfasser: Remes, Ulpu, Lopez, Ana Ramirez, Palomaki, Kalle, Kurimo, Mikko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatic speech recognition systems use noise compensation and acoustic model adaptation to increase robustness towards speaker and environmental variation. The current work focuses on noise compensation with bounded conditional mean imputation (BCMI). BCMI approaches are missing-data methods which operate on the assumption that noise-corrupted observations can be divided into reliable and unreliable components. BCMI methods substitute the unreliable components with a clean speech posterior distribution. The posterior means can be used as clean speech estimates and the posterior variances can be introduced in acoustic model likelihood calculation as observation uncertainties. In addition, we propose in the current work that similar uncertainties are introduced in acoustic model adaptation. Evaluation with speech data recorded in diverse public and car environments indicates that the proposed uncertainties improve adaptation performance. When uncertainties were used in acoustic model likelihood calculation and adaptation, the proposed imputation and adaptation system introduced 15%-84% relative error reductions to an uncompensated baseline system performance.
ISSN:2329-9290
2329-9304
DOI:10.1109/TASLP.2015.2424322