A Learning-Based Assembly Sequence Planning Method Using Neural Combinatorial Optimization With Satisfactory Generalization Ability
This paper proposes a specific and effective real-time sequence planning method using robot manipulators to complete complex assembly tasks. Many previous studies developed different traversal methods to obtain the optimal assembly sequence. Besides, a number of algorithms were proposed to enhance f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2024-11, p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a specific and effective real-time sequence planning method using robot manipulators to complete complex assembly tasks. Many previous studies developed different traversal methods to obtain the optimal assembly sequence. Besides, a number of algorithms were proposed to enhance flexibility when the conditions or rules were changed in various sequence optimization problems. However, these state-of-the-art (STOA) methods necessarily require modifications when task details are changed. Consequently, to further improve the generalization ability and improve the performance of the sequence optimization, a neural combinatorial optimization algorithm combined with a self-learning strategy is proposed for assembly sequence planning. In addition, obstacle avoidance and the non-collision constraints between workpieces in the assembly process are considered. According to the experiment results, the new method is superior to the STOA methods in terms of optimization efficiency. More importantly, the proposed method has satisfactory generalization ability for different assembly tasks. Note to Practitioners -This paper studies assembly sequence planning problems for different real-world applications in industrial and home service fields. Many assembly sequence planning solutions have been widely utilized before. However, the generalization ability of the previous methods is not satisfactory since the re-adjust process is required when the workpiece number or collision condition changes in different tasks. Motivated by the above reasons, this paper develops a learning-based assembly sequence planning solution to resolve complex assembly problems without parameter re-adjustment processes. Users can directly apply the developed workpiece identification and localization method to obtain the sensing information. Then, the newly designed collision-free cost function should be programmed as the core of the assembly sequence optimization. Next, the proposed neural combinatorial optimization (NCO) with the sensing information and target configuration as inputs can provide the optimal assembly sequence by self-learning. The learned NCO-based method can be directly applied to diverse planning tasks, even with different workpiece numbers. Users can also refer to the experimental examples in this paper for the extension of the proposed method to their own applications. |
---|---|
ISSN: | 1545-5955 1558-3783 |
DOI: | 10.1109/TASE.2024.3493617 |