General Support-Effective Decomposition for Multi-Directional 3-D Printing
We present a method for fabricating general models with multi-directional 3-D printing systems by printing different model regions along with different directions. The core of our method is a support-effective volume decomposition algorithm that minimizes the area of the regions with large overhangs...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2020-04, Vol.17 (2), p.599-610 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a method for fabricating general models with multi-directional 3-D printing systems by printing different model regions along with different directions. The core of our method is a support-effective volume decomposition algorithm that minimizes the area of the regions with large overhangs. A beam-guided searching algorithm with manufacturing constraints determines the optimal volume decomposition, which is represented by a sequence of clipping planes. While current approaches require manually assembling separate components into a final model, our algorithm allows for directly printing the final model in a single pass. It can also be applied to models with loops and handles. A supplementary algorithm generates special supporting structures for models where supporting structures for large overhangs cannot be eliminated. We verify the effectiveness of our method using two hardware systems: a Cartesian-motion-based system and an angular-motion-based system. A variety of 3-D models have been successfully fabricated on these systems. |
---|---|
ISSN: | 1545-5955 1558-3783 |
DOI: | 10.1109/TASE.2019.2938219 |