Modelling the Quench Behavior of an NI HTS Applied-Field Module for a Magnetoplasmadynamic Thruster Undergoing a 1kW Discharge

Recent advances in commercial miniaturised cryocoolers and high-temperature superconductors (HTS) have revived the discussion of using HTS electromagnets to enhance the thrust and efficiency of electric thrusters for space applications. An HTS applied-field magnetoplasmadynamic (AF-MPD) thruster is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-6
Hauptverfasser: Olatunji, J. R., Weijers, H. W., Strickland, N. M., Wimbush, S. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in commercial miniaturised cryocoolers and high-temperature superconductors (HTS) have revived the discussion of using HTS electromagnets to enhance the thrust and efficiency of electric thrusters for space applications. An HTS applied-field magnetoplasmadynamic (AF-MPD) thruster is currently being developed. While the thruster is operating, there will be a large time-variable heat load on the cryogenic environment. The operation of a low-power cryocooler and energised HTS coils (operating at 70 K) adjacent to streams of hot plasma and large electrical discharges (on the order of 1 kW) represents a significant thermal management problem. The electromagnetic and thermal behaviour of non-insulated (NI) coils under these conditions, and how resilient they are to quenching during thruster operation, is not well understood. In this paper, a model is formulated to study the transient electromagnetic and thermal behaviour of an HTS-AF-MPD thruster with NI coils. The thruster and a conduction cooled cryogenic design are coupled via surface-to-surface radiation heat transfer. The model predicts current flow within the HTS, copper stabiliser and between turns, with the contact resistivity being a key input variable. Critical current is determined locally using temperature, magnetic field, and field angle in combination with a measured data set for a specific conductor. This model reveals conditions where the cryocooler can passively compensate for large instantaneous heat loads on the coils, demonstrating quench resistance.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2023.3264170