A Compact 2-D Stochastic FDTD Method for Uncertainty Analysis in Superconducting Transmission Lines
In this article, a stochastic finite-difference time-domain (S-FDTD) method is proposed for analyzing the influence of physical size uncertainty on the time-domain response of superconducting transmission lines. The formulations of the proposed method are, in detail, derived with the two-fluid model...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2020-12, Vol.30 (8), p.1-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, a stochastic finite-difference time-domain (S-FDTD) method is proposed for analyzing the influence of physical size uncertainty on the time-domain response of superconducting transmission lines. The formulations of the proposed method are, in detail, derived with the two-fluid model and London equation. A typical superconducting microstrip line is simulated to verify the effectiveness of the proposed algorithm. Compared with the Monte Carlo simulation, the proposed method has the same accuracy but much higher efficiency. The computation time of the proposed S-FDTD method is only about 3% of that of the Monte Carlo simulation. Therefore, the proposed method shows a promising prospect on predicting the variability in transmission line's performance caused by variation in superconducting manufacturing. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2020.3006538 |