Machine Learning, Markov Chain Monte Carlo, and Optimal Algorithms to Characterize the AdvACT Kilopixel Transition-Edge Sensor Arrays

Next-generation focal planes comprising dozens of kilopixel transition-edge sensor (TES) arrays require new methods to rapidly screen candidate arrays, evaluate array non-idealities in the field, identify outlier devices for removal, and optimize the array performance in the field. We demonstrate ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2019-08, Vol.29 (5), p.1-5
Hauptverfasser: Salatino, Maria, Hubmayr, Johannes, Li, Yaqiong, Niemack, Michael D., Simon, Sara M., Staggs, Suzanne T., Wollack, Edward J., Austermann, Jason, Beall, James A., Choi, Steve, Crowley, Kevin T., Duff, Shannon, Henderson, Shawn W., Hilton, Gene, Ho, S.-P. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Next-generation focal planes comprising dozens of kilopixel transition-edge sensor (TES) arrays require new methods to rapidly screen candidate arrays, evaluate array non-idealities in the field, identify outlier devices for removal, and optimize the array performance in the field. We demonstrate robust methods to estimate TES parameters (critical temperatures and thermal conductivity parameters) and their uncertainties using a custom Markov Chain Monte Carlo (MCMC) algorithm. We also constrain systematic effects in estimating the TES parameters from non-isothermal current-voltage curves (IVs) at approximately a ~3% level. Additionally, for the first time, we have applied Machine Learning (ML) algorithms to tune detector arrays and optimize their performance.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2019.2910542