Verification of HTS SMES Lumped Parameter Network Model
HTS Superconducting superconducting magnetic energy storage (SMES) can be utilized to ensure stable operation and high high-quality power supply in power systems. The lumped parameter network model of the magnet, which is taken example by transformer transient model, composed of self-inductances, mu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2017-06, Vol.27 (4), p.1-5 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | HTS Superconducting superconducting magnetic energy storage (SMES) can be utilized to ensure stable operation and high high-quality power supply in power systems. The lumped parameter network model of the magnet, which is taken example by transformer transient model, composed of self-inductances, mutual couplings, and series and shunt capacitances,is typically used to analyze the voltage distribution on the HTS magnet. The model is helpful in regards to the insulation design of SMES magnets, so its accuracy is a crucial consideration. This paper introduces an HTS SMES lumped parameter network model and corresponding parameter calculation technique. Tests were run on under various conditions and the results were compared against the simulation results to verify the model's accuracy. Suggestions for insulation design and transient suppression are presented based on our observations. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2017.2652861 |