Toward High Resolution Images With SQUID-Based Ultra-Low Field Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is the state-of-the-art clinical method for imaging soft-tissue anatomy. Because signal scales with the applied magnetic field, the overwhelming trend in MRI has been high magnetic fields, typically 1.5 or 3 T. However, there has been recent interest in ultra-low fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.1603107-1603107
Hauptverfasser: Espy, Michelle, Magnelind, Per, Matlashov, Andrei, Newman, Shaun, Urbaitis, Algis, Volegov, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic resonance imaging (MRI) is the state-of-the-art clinical method for imaging soft-tissue anatomy. Because signal scales with the applied magnetic field, the overwhelming trend in MRI has been high magnetic fields, typically 1.5 or 3 T. However, there has been recent interest in ultra-low field (ULF) MRI using 10-100 \mu\hbox{T} magnetic fields. At ULF there are opportunities for novel imaging applications such as MRI combined with magnetoencephalography in a single device, imaging through or in the presence of metal, and enhanced spin-lattice tissue contrast. Loss in signal is mitigated by sensitive detectors such as superconducting quantum interference devices and sample pre-polarization, typically from 10-100 mT. There have been several proof-of-concept demonstrations based on this approach. However, ULF MRI image quality still suffers from one or more of the following disadvantages compared to high-frequency MRI: lower signal-to-noise ratio, poor spatial resolution, and longer imaging time. Here we present recent progress toward "clinically relevant" ULF MRI parameters: voxel signal-to-noise ratio > 10, voxel size
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2013.2246751