Optimal Placement of Superconducting Fault Current Limiters (SFCLs) for Protection of an Electric Power System with Distributed Generations (DGs)

Power flow patterns and fault current levels are influenced by the introduction of distributed generations (DGs) in an electric power system. In particular, the change in the fault current levels caused by DG installation may require a change in the coordination of relays to prevent their misoperati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2013-06, Vol.23 (3), p.5600304-5600304
Hauptverfasser: Jo, Hyung-Chul, Joo, Sung-Kwan, Lee, Kisung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Power flow patterns and fault current levels are influenced by the introduction of distributed generations (DGs) in an electric power system. In particular, the change in the fault current levels caused by DG installation may require a change in the coordination of relays to prevent their misoperation. When DGs are installed in an electric power system, superconducting fault current limiters (SFCLs) can be used to help reduce the fault currents within the breaking capacity of the protective devices. In this paper, multiple criteria such as the number of SFCLs, fault current reduction, and the total operating time of the relays are considered in order to determine the optimal placement of SFCLs for protection of an electric power system with DGs, and a scenario optimization based approach is used to solve the multi-criteria SFCL placement problem. Numerical simulations are also carried out to demonstrate the effectiveness of the proposed approach.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2012.2232958