Present and Future Applications for Advanced Superconducting Materials in High Field Magnets
Advances in high field magnets are driven primarily by the availability of high current density conductors. The restack rod process (RRP), internal Sn superconductors have achieved engineering current densities nearly five times that of bronze route conductors at high fields. Careful utilization of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2007-06, Vol.17 (2), p.2295-2298 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advances in high field magnets are driven primarily by the availability of high current density conductors. The restack rod process (RRP), internal Sn superconductors have achieved engineering current densities nearly five times that of bronze route conductors at high fields. Careful utilization of this low temperature superconductor (LTS) enables the production of magnets beyond the previous benchmark of 21 Tesla without an associated increase in magnet and cryostat volume. Steps to realize extremely compact high field magnets for a variety of applications are described. The next significant challenge is to produce magnetic fields beyond 25 Tesla solely using superconducting solenoids. High temperature superconductors (HTS) will be required and, to this end, Bi-2212/Ag matrix wires are at an advanced stage of development. The tangible objective is a new generation of compact, ultra-high field magnets. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2007.898430 |