Electronic Performance-Oriented Mold Sharing Method and Application in QTT 110 m Large Radio Telescope

The reflector surface of a large reflector antenna may even consist of thousands of panels, and if the panel molds with high-precision requirements are fabricated uniquely for each ring, the overall cost will be very high. Therefore, from a perspective of reducing the cost, the mold sharing design i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2020-08, Vol.68 (8), p.6407-6412
Hauptverfasser: Feng, Shufei, Ban, You, Duan, Baoyan, Wang, Congsi, Wang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reflector surface of a large reflector antenna may even consist of thousands of panels, and if the panel molds with high-precision requirements are fabricated uniquely for each ring, the overall cost will be very high. Therefore, from a perspective of reducing the cost, the mold sharing design is of particular significance. In order to obtain the minimum number of molds satisfying the given electronic performance index, the electronic performance-oriented mold sharing design is suggested, in which the effective surface accuracy is used to evaluate electrical performance. The smaller the combined effective root-mean-square (rms) error value introduced after sharing the mold, the more preferential these rings should share the mold to reduce the number of molds. Based on such idea, a fast mold reduction process is presented, which can give the minimum number of molds quickly according to the electrical performance requirements. During this process, a combined effective rms value matrix and a mold sharing discriminant matrix are defined and used. To construct these two matrices, the panel normal error induced by mold sharing is derived, and the optimal mold position is determined first. As a test problem, application of the proposed method to mold reduction of a 110 m radio telescope is presented, and the discussions of the results are given.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2020.2970117