Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells

This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2019-10, Vol.67 (10), p.6523-6531
Hauptverfasser: Payne, Komlan, Xu, Kevin, Choi, Jun H., Lee, Jay Kyoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6531
container_issue 10
container_start_page 6523
container_title IEEE transactions on antennas and propagation
container_volume 67
creator Payne, Komlan
Xu, Kevin
Choi, Jun H.
Lee, Jay Kyoon
description This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained.
doi_str_mv 10.1109/TAP.2019.2925185
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2019_2925185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8753721</ieee_id><sourcerecordid>2303949286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e62ffe9e42f05c714583b70f0e46c7d0bf69d651ed81f136b614082d5235a68a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZfG1yrLVWoWLBCt5CdneCW9JuTbZK_70rLZ6Gged9h3kIuQY6AqDmbjlejBgFM2KGSdDyhAxASp0zxuCUDCgFnRumPs7JRUqrfhVaiAGZTQNWXWwqF8I-W-42rgyYvTRVbH_cN2bjMrWxxJjdu4R11m6yhyZVETvMFsGltcvfPjGEdEnOvAsJr45zSN4fp8vJUz5_nT1PxvO8Yga6HBXzHg0K5qmsChBS87KgnqJQVVHT0itTKwlYa_DAValAUM1qybh0Sjs-JLeH3m1sv3aYOrtqd3HTn7SMU26EYVr1FD1Q_RspRfR2G5u1i3sL1P7psr0u-6fLHnX1kZtDpEHEf1wXkhcM-C_A8mUL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303949286</pqid></control><display><type>article</type><title>Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells</title><source>IEEE Electronic Library (IEL)</source><creator>Payne, Komlan ; Xu, Kevin ; Choi, Jun H. ; Lee, Jay Kyoon</creator><creatorcontrib>Payne, Komlan ; Xu, Kevin ; Choi, Jun H. ; Lee, Jay Kyoon</creatorcontrib><description>This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2925185</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active high impedance surface ; Admittance ; Aerospace environments ; circuit analog absorber (CAA) ; Circuits ; Computer simulation ; Conductors ; Coupled walls ; Electric potential ; Equivalent circuits ; lossy frequency selective surfaces (FSSs) ; Microwave absorbers ; Permittivity ; Plasma ; Plasmas ; radar cross section (RCS) ; Radar cross-sections ; Radio frequency ; radio frequency (RF) plasma discharge ; Resonant frequency ; Topology ; Transmission lines ; tunable absorber ; Tuning ; Voltage</subject><ispartof>IEEE transactions on antennas and propagation, 2019-10, Vol.67 (10), p.6523-6531</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e62ffe9e42f05c714583b70f0e46c7d0bf69d651ed81f136b614082d5235a68a3</citedby><cites>FETCH-LOGICAL-c291t-e62ffe9e42f05c714583b70f0e46c7d0bf69d651ed81f136b614082d5235a68a3</cites><orcidid>0000-0002-2127-0689 ; 0000-0002-7237-0540 ; 0000-0001-6171-9527 ; 0000-0002-2744-7035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8753721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8753721$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Payne, Komlan</creatorcontrib><creatorcontrib>Xu, Kevin</creatorcontrib><creatorcontrib>Choi, Jun H.</creatorcontrib><creatorcontrib>Lee, Jay Kyoon</creatorcontrib><title>Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained.</description><subject>Active high impedance surface</subject><subject>Admittance</subject><subject>Aerospace environments</subject><subject>circuit analog absorber (CAA)</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Conductors</subject><subject>Coupled walls</subject><subject>Electric potential</subject><subject>Equivalent circuits</subject><subject>lossy frequency selective surfaces (FSSs)</subject><subject>Microwave absorbers</subject><subject>Permittivity</subject><subject>Plasma</subject><subject>Plasmas</subject><subject>radar cross section (RCS)</subject><subject>Radar cross-sections</subject><subject>Radio frequency</subject><subject>radio frequency (RF) plasma discharge</subject><subject>Resonant frequency</subject><subject>Topology</subject><subject>Transmission lines</subject><subject>tunable absorber</subject><subject>Tuning</subject><subject>Voltage</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZfG1yrLVWoWLBCt5CdneCW9JuTbZK_70rLZ6Gged9h3kIuQY6AqDmbjlejBgFM2KGSdDyhAxASp0zxuCUDCgFnRumPs7JRUqrfhVaiAGZTQNWXWwqF8I-W-42rgyYvTRVbH_cN2bjMrWxxJjdu4R11m6yhyZVETvMFsGltcvfPjGEdEnOvAsJr45zSN4fp8vJUz5_nT1PxvO8Yga6HBXzHg0K5qmsChBS87KgnqJQVVHT0itTKwlYa_DAValAUM1qybh0Sjs-JLeH3m1sv3aYOrtqd3HTn7SMU26EYVr1FD1Q_RspRfR2G5u1i3sL1P7psr0u-6fLHnX1kZtDpEHEf1wXkhcM-C_A8mUL</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Payne, Komlan</creator><creator>Xu, Kevin</creator><creator>Choi, Jun H.</creator><creator>Lee, Jay Kyoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2127-0689</orcidid><orcidid>https://orcid.org/0000-0002-7237-0540</orcidid><orcidid>https://orcid.org/0000-0001-6171-9527</orcidid><orcidid>https://orcid.org/0000-0002-2744-7035</orcidid></search><sort><creationdate>20191001</creationdate><title>Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells</title><author>Payne, Komlan ; Xu, Kevin ; Choi, Jun H. ; Lee, Jay Kyoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e62ffe9e42f05c714583b70f0e46c7d0bf69d651ed81f136b614082d5235a68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active high impedance surface</topic><topic>Admittance</topic><topic>Aerospace environments</topic><topic>circuit analog absorber (CAA)</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Conductors</topic><topic>Coupled walls</topic><topic>Electric potential</topic><topic>Equivalent circuits</topic><topic>lossy frequency selective surfaces (FSSs)</topic><topic>Microwave absorbers</topic><topic>Permittivity</topic><topic>Plasma</topic><topic>Plasmas</topic><topic>radar cross section (RCS)</topic><topic>Radar cross-sections</topic><topic>Radio frequency</topic><topic>radio frequency (RF) plasma discharge</topic><topic>Resonant frequency</topic><topic>Topology</topic><topic>Transmission lines</topic><topic>tunable absorber</topic><topic>Tuning</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Payne, Komlan</creatorcontrib><creatorcontrib>Xu, Kevin</creatorcontrib><creatorcontrib>Choi, Jun H.</creatorcontrib><creatorcontrib>Lee, Jay Kyoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Payne, Komlan</au><au>Xu, Kevin</au><au>Choi, Jun H.</au><au>Lee, Jay Kyoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>67</volume><issue>10</issue><spage>6523</spage><epage>6531</epage><pages>6523-6531</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2925185</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2127-0689</orcidid><orcidid>https://orcid.org/0000-0002-7237-0540</orcidid><orcidid>https://orcid.org/0000-0001-6171-9527</orcidid><orcidid>https://orcid.org/0000-0002-2744-7035</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2019-10, Vol.67 (10), p.6523-6531
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2019_2925185
source IEEE Electronic Library (IEL)
subjects Active high impedance surface
Admittance
Aerospace environments
circuit analog absorber (CAA)
Circuits
Computer simulation
Conductors
Coupled walls
Electric potential
Equivalent circuits
lossy frequency selective surfaces (FSSs)
Microwave absorbers
Permittivity
Plasma
Plasmas
radar cross section (RCS)
Radar cross-sections
Radio frequency
radio frequency (RF) plasma discharge
Resonant frequency
Topology
Transmission lines
tunable absorber
Tuning
Voltage
title Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Tunable%20Microwave%20Absorber%20Based%20on%20Discrete%20Plasma-Shells&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Payne,%20Komlan&rft.date=2019-10-01&rft.volume=67&rft.issue=10&rft.spage=6523&rft.epage=6531&rft.pages=6523-6531&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2925185&rft_dat=%3Cproquest_RIE%3E2303949286%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303949286&rft_id=info:pmid/&rft_ieee_id=8753721&rfr_iscdi=true