Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells
This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2019-10, Vol.67 (10), p.6523-6531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6531 |
---|---|
container_issue | 10 |
container_start_page | 6523 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 67 |
creator | Payne, Komlan Xu, Kevin Choi, Jun H. Lee, Jay Kyoon |
description | This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained. |
doi_str_mv | 10.1109/TAP.2019.2925185 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2019_2925185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8753721</ieee_id><sourcerecordid>2303949286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e62ffe9e42f05c714583b70f0e46c7d0bf69d651ed81f136b614082d5235a68a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZfG1yrLVWoWLBCt5CdneCW9JuTbZK_70rLZ6Gged9h3kIuQY6AqDmbjlejBgFM2KGSdDyhAxASp0zxuCUDCgFnRumPs7JRUqrfhVaiAGZTQNWXWwqF8I-W-42rgyYvTRVbH_cN2bjMrWxxJjdu4R11m6yhyZVETvMFsGltcvfPjGEdEnOvAsJr45zSN4fp8vJUz5_nT1PxvO8Yga6HBXzHg0K5qmsChBS87KgnqJQVVHT0itTKwlYa_DAValAUM1qybh0Sjs-JLeH3m1sv3aYOrtqd3HTn7SMU26EYVr1FD1Q_RspRfR2G5u1i3sL1P7psr0u-6fLHnX1kZtDpEHEf1wXkhcM-C_A8mUL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303949286</pqid></control><display><type>article</type><title>Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells</title><source>IEEE Electronic Library (IEL)</source><creator>Payne, Komlan ; Xu, Kevin ; Choi, Jun H. ; Lee, Jay Kyoon</creator><creatorcontrib>Payne, Komlan ; Xu, Kevin ; Choi, Jun H. ; Lee, Jay Kyoon</creatorcontrib><description>This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2925185</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active high impedance surface ; Admittance ; Aerospace environments ; circuit analog absorber (CAA) ; Circuits ; Computer simulation ; Conductors ; Coupled walls ; Electric potential ; Equivalent circuits ; lossy frequency selective surfaces (FSSs) ; Microwave absorbers ; Permittivity ; Plasma ; Plasmas ; radar cross section (RCS) ; Radar cross-sections ; Radio frequency ; radio frequency (RF) plasma discharge ; Resonant frequency ; Topology ; Transmission lines ; tunable absorber ; Tuning ; Voltage</subject><ispartof>IEEE transactions on antennas and propagation, 2019-10, Vol.67 (10), p.6523-6531</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e62ffe9e42f05c714583b70f0e46c7d0bf69d651ed81f136b614082d5235a68a3</citedby><cites>FETCH-LOGICAL-c291t-e62ffe9e42f05c714583b70f0e46c7d0bf69d651ed81f136b614082d5235a68a3</cites><orcidid>0000-0002-2127-0689 ; 0000-0002-7237-0540 ; 0000-0001-6171-9527 ; 0000-0002-2744-7035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8753721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8753721$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Payne, Komlan</creatorcontrib><creatorcontrib>Xu, Kevin</creatorcontrib><creatorcontrib>Choi, Jun H.</creatorcontrib><creatorcontrib>Lee, Jay Kyoon</creatorcontrib><title>Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained.</description><subject>Active high impedance surface</subject><subject>Admittance</subject><subject>Aerospace environments</subject><subject>circuit analog absorber (CAA)</subject><subject>Circuits</subject><subject>Computer simulation</subject><subject>Conductors</subject><subject>Coupled walls</subject><subject>Electric potential</subject><subject>Equivalent circuits</subject><subject>lossy frequency selective surfaces (FSSs)</subject><subject>Microwave absorbers</subject><subject>Permittivity</subject><subject>Plasma</subject><subject>Plasmas</subject><subject>radar cross section (RCS)</subject><subject>Radar cross-sections</subject><subject>Radio frequency</subject><subject>radio frequency (RF) plasma discharge</subject><subject>Resonant frequency</subject><subject>Topology</subject><subject>Transmission lines</subject><subject>tunable absorber</subject><subject>Tuning</subject><subject>Voltage</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562ZfG1yrLVWoWLBCt5CdneCW9JuTbZK_70rLZ6Gged9h3kIuQY6AqDmbjlejBgFM2KGSdDyhAxASp0zxuCUDCgFnRumPs7JRUqrfhVaiAGZTQNWXWwqF8I-W-42rgyYvTRVbH_cN2bjMrWxxJjdu4R11m6yhyZVETvMFsGltcvfPjGEdEnOvAsJr45zSN4fp8vJUz5_nT1PxvO8Yga6HBXzHg0K5qmsChBS87KgnqJQVVHT0itTKwlYa_DAValAUM1qybh0Sjs-JLeH3m1sv3aYOrtqd3HTn7SMU26EYVr1FD1Q_RspRfR2G5u1i3sL1P7psr0u-6fLHnX1kZtDpEHEf1wXkhcM-C_A8mUL</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Payne, Komlan</creator><creator>Xu, Kevin</creator><creator>Choi, Jun H.</creator><creator>Lee, Jay Kyoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2127-0689</orcidid><orcidid>https://orcid.org/0000-0002-7237-0540</orcidid><orcidid>https://orcid.org/0000-0001-6171-9527</orcidid><orcidid>https://orcid.org/0000-0002-2744-7035</orcidid></search><sort><creationdate>20191001</creationdate><title>Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells</title><author>Payne, Komlan ; Xu, Kevin ; Choi, Jun H. ; Lee, Jay Kyoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e62ffe9e42f05c714583b70f0e46c7d0bf69d651ed81f136b614082d5235a68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active high impedance surface</topic><topic>Admittance</topic><topic>Aerospace environments</topic><topic>circuit analog absorber (CAA)</topic><topic>Circuits</topic><topic>Computer simulation</topic><topic>Conductors</topic><topic>Coupled walls</topic><topic>Electric potential</topic><topic>Equivalent circuits</topic><topic>lossy frequency selective surfaces (FSSs)</topic><topic>Microwave absorbers</topic><topic>Permittivity</topic><topic>Plasma</topic><topic>Plasmas</topic><topic>radar cross section (RCS)</topic><topic>Radar cross-sections</topic><topic>Radio frequency</topic><topic>radio frequency (RF) plasma discharge</topic><topic>Resonant frequency</topic><topic>Topology</topic><topic>Transmission lines</topic><topic>tunable absorber</topic><topic>Tuning</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Payne, Komlan</creatorcontrib><creatorcontrib>Xu, Kevin</creatorcontrib><creatorcontrib>Choi, Jun H.</creatorcontrib><creatorcontrib>Lee, Jay Kyoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Payne, Komlan</au><au>Xu, Kevin</au><au>Choi, Jun H.</au><au>Lee, Jay Kyoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>67</volume><issue>10</issue><spage>6523</spage><epage>6531</epage><pages>6523-6531</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2925185</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2127-0689</orcidid><orcidid>https://orcid.org/0000-0002-7237-0540</orcidid><orcidid>https://orcid.org/0000-0001-6171-9527</orcidid><orcidid>https://orcid.org/0000-0002-2744-7035</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2019-10, Vol.67 (10), p.6523-6531 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2019_2925185 |
source | IEEE Electronic Library (IEL) |
subjects | Active high impedance surface Admittance Aerospace environments circuit analog absorber (CAA) Circuits Computer simulation Conductors Coupled walls Electric potential Equivalent circuits lossy frequency selective surfaces (FSSs) Microwave absorbers Permittivity Plasma Plasmas radar cross section (RCS) Radar cross-sections Radio frequency radio frequency (RF) plasma discharge Resonant frequency Topology Transmission lines tunable absorber Tuning Voltage |
title | Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Tunable%20Microwave%20Absorber%20Based%20on%20Discrete%20Plasma-Shells&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Payne,%20Komlan&rft.date=2019-10-01&rft.volume=67&rft.issue=10&rft.spage=6523&rft.epage=6531&rft.pages=6523-6531&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2925185&rft_dat=%3Cproquest_RIE%3E2303949286%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303949286&rft_id=info:pmid/&rft_ieee_id=8753721&rfr_iscdi=true |