Electrically Tunable Microwave Absorber Based on Discrete Plasma-Shells
This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2019-10, Vol.67 (10), p.6523-6531 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the feasibility of deploying a large-scale tunable absorber based on discrete plasma-shells. The proposed conductor-backed absorber is realized by integrating ceramic gas-encapsulating chambers (plasma-shells) and a closely coupled lossy resonant layer that also serves as a biasing electrode to sustain the plasma. Two topologies comprising lossy inductive or capacitive layers are investigated to realize tunable microwave absorbers. The plasma is sustained by a sinusoidal radio frequency (RF) voltage source coupled directly through the walls of the plasma-shells. These active frequency-selective absorbers are analyzed using a transmission line approach to provide the working principle and its frequency tuning capability. By varying the voltage of the sustainer, the plasma can be modeled as a lossy, variable, frequency-dependent inductor, providing a dynamic tuning response of the absorption spectral band. A prototype plasma-tuned absorber is fabricated and measured in a free space environment to validate the concept. A good agreement between the equivalent circuit model, full-wave electromagnetic simulation, and the measurement results is obtained. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2019.2925185 |