E -Band Substrate Integrated Waveguide Orthomode Transducer Integrated With Dual-Polarized Horn Antenna

This paper presents an E-band substrate integrated waveguide (SIW) dual-polarized antenna system, which consists of an orthomode transducer (OMT) and a dual-polarized horn antenna. On the basis of a two-layer substrate design, the function of OMT is realized by utilizing an SIW section to excite TE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2018-05, Vol.66 (5), p.2291-2298
Hauptverfasser: Jin, Haiyan, Huang, Yong Mao, Jin, Hailu, Wu, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an E-band substrate integrated waveguide (SIW) dual-polarized antenna system, which consists of an orthomode transducer (OMT) and a dual-polarized horn antenna. On the basis of a two-layer substrate design, the function of OMT is realized by utilizing an SIW section to excite TE 10 mode for the vertical polarization, a quasi-coaxial stripline to excite quasi-TEM mode for the horizontal polarization. And also, a slot line transition is placed at the common port of the two structures for impedance matching with the ridge SIW dual-polarized horn antenna. In this way, the dual-polarized horn antenna is designed with an exponential ridge structure simultaneously for better impedance matching and higher efficiency of the antenna. To verify the functionality of the proposed integrated OMT-antenna structure, an experimental prototype is fabricated and measured, and a good agreement is found between its simulation and measured results. Over the frequency range of 83-87 GHz, return loss better than 10 dB at all ports and cross-polarization less than −25 dB are obtained. The maximum antenna gain is about 14 dBi for the horizontal polarization and 15.2 dBi for the vertical polarization. It is believed that the proposed OMT-antenna design is suitable for ultrahigh capacity millimeter-wave backhaul applications in future wireless communication systems.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2018.2816601