An Octave-Bandwidth Half Maxwell Fish-Eye Lens Antenna Using Three-Dimensional Gradient-Index Fractal Metamaterials

The design and performance of a novel octave-bandwidth highly-directive half Maxwell fish-eye (HMFE) lens antenna are presented in superextended C band. The three-dimensional (3D) HMFE lens is implemented by gradient-refractive-index (GRIN) metamaterials and launched by an omnidirectional planar mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2014-09, Vol.62 (9), p.4823-4828
Hauptverfasser: Xu, He-Xiu, Wang, Guang-Ming, Tao, Zui, Cai, Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design and performance of a novel octave-bandwidth highly-directive half Maxwell fish-eye (HMFE) lens antenna are presented in superextended C band. The three-dimensional (3D) HMFE lens is implemented by gradient-refractive-index (GRIN) metamaterials and launched by an omnidirectional planar microstrip trapezoid printed monopole from the perspective of high integration, light weight and low profile. A new approach is proposed to design the GRIN metamaterial element in terms of a deep subwavelength feature by incorporating fractal geometry. Numerical and experimental results coincide well, showing that the lens enables a considerable gain enhancement of the monopole near 10 dB across a frequency range of 3 to 7.5 GHz while without significantly affecting the cross-polarization patterns and impedance matching. The near-field free-space measurement is also performed in an octave to afford a physical insight into the high gain, which is attributable to the accurate conversion of quasi-spherical waves to plane waves. Moreover, the truncation and homogenization effects of the lens on the antenna directivity are investigated to illustrate the fundamental mechanisms and afford the design guidelines.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2014.2330615