Semidefinite Programming Solutions for Elliptic Localization in Asynchronous Radar Networks

In this article, semidefinite programming (SDP) solutions are proposed for the elliptic localization problem in asynchronous radar networks, where the transmitters are subject to clock offsets. Relaxing the nonconvex problem into different convex forms, we design tight SDP (TSDP) and global SDP (GSD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2022-08, Vol.58 (4), p.3385-3398
Hauptverfasser: Wu, Xiaoping, Shen, Yana, Zhu, Xuefen, Lin, Qinman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, semidefinite programming (SDP) solutions are proposed for the elliptic localization problem in asynchronous radar networks, where the transmitters are subject to clock offsets. Relaxing the nonconvex problem into different convex forms, we design tight SDP (TSDP) and global SDP (GSDP) solutions for this problem. The TSDP solution includes several SDP cones to solve the problem, and the correlation is not considered. Hence, the TSDP solution performs poorly in the presence of correlated noise. We further put forward the GSDP solution to improve the performance by introducing a new GSDP form, which includes only one SDP cone to handle the correlated noise. We also theoretically prove that the GSDP problem is tight enough so that its performance is able to sufficiently approach the Cramér–Rao lower bound (CRLB) accuracy. The simulated results show that the TSDP solution can provide the comparable performance with the GSDP in the absence of related noise. The performance of the GSDP solution can almost attain the CRLB accuracy using less receivers.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2022.3149855