Decreased Probability of Error in Template-Matching Classification Using Aspect-Diverse Bistatic SAR

We extend the concept of monostatic aspect diversity for improved automatic target recognition (ATR) to a bistatic synthetic aperture radar (SAR) platform. We derive the probability of error with respect to the number of aspects used for a simple two-target template-matching classification system. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2018-08, Vol.54 (4), p.1862-1870
Hauptverfasser: Laubie, Ellen E., Rigling, Brian D., Penno, Robert P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the concept of monostatic aspect diversity for improved automatic target recognition (ATR) to a bistatic synthetic aperture radar (SAR) platform. We derive the probability of error with respect to the number of aspects used for a simple two-target template-matching classification system. The validity of the error prediction is confirmed using simulated bistatic SAR images. Our results demonstrate the ATR benefits of supplementing monostatic SAR images with one or more bistatic SAR images.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2018.2805142