A New Adaptive Extended Kalman Filter for Cooperative Localization
To solve the problem of unknown noise covariance matrices inherent in the cooperative localization of autonomous underwater vehicles, a new adaptive extended Kalman filter is proposed. The predicted error covariance matrix and measurement noise covariance matrix are adaptively estimated based on an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2018-02, Vol.54 (1), p.353-368 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To solve the problem of unknown noise covariance matrices inherent in the cooperative localization of autonomous underwater vehicles, a new adaptive extended Kalman filter is proposed. The predicted error covariance matrix and measurement noise covariance matrix are adaptively estimated based on an online expectation-maximization approach. Experimental results illustrate that, under the circumstances that are detailed in the paper, the proposed algorithm has better localization accuracy than existing state-of-the-art algorithms. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2017.2756763 |