A New Adaptive Extended Kalman Filter for Cooperative Localization

To solve the problem of unknown noise covariance matrices inherent in the cooperative localization of autonomous underwater vehicles, a new adaptive extended Kalman filter is proposed. The predicted error covariance matrix and measurement noise covariance matrix are adaptively estimated based on an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2018-02, Vol.54 (1), p.353-368
Hauptverfasser: Huang, Yulong, Zhang, Yonggang, Xu, Bo, Wu, Zhemin, Chambers, Jonathon A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To solve the problem of unknown noise covariance matrices inherent in the cooperative localization of autonomous underwater vehicles, a new adaptive extended Kalman filter is proposed. The predicted error covariance matrix and measurement noise covariance matrix are adaptively estimated based on an online expectation-maximization approach. Experimental results illustrate that, under the circumstances that are detailed in the paper, the proposed algorithm has better localization accuracy than existing state-of-the-art algorithms.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2017.2756763