Regularized Difference Criterion for Computing Discriminants for Dimensionality Reduction

Hyperspectral data classification has shown potential in many applications. However, a large number of spectral bands cause overfitting. Methods for reducing spectral bands, e.g., linear discriminant analysis, require matrix inversion. We propose a semidefinite programming for linear discriminants r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2017-10, Vol.53 (5), p.2372-2384
Hauptverfasser: Aved, Alex J., Blasch, Erik P., Jing Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral data classification has shown potential in many applications. However, a large number of spectral bands cause overfitting. Methods for reducing spectral bands, e.g., linear discriminant analysis, require matrix inversion. We propose a semidefinite programming for linear discriminants regularized difference (SLRD) criterion approach that does not require matrix inversion. The paper establishes a classification error bound and provides experimental results with ten methods over six hyperspectral datasets demonstrating the efficacy of the proposed SLRD technique.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2017.2696236