Regularized Difference Criterion for Computing Discriminants for Dimensionality Reduction
Hyperspectral data classification has shown potential in many applications. However, a large number of spectral bands cause overfitting. Methods for reducing spectral bands, e.g., linear discriminant analysis, require matrix inversion. We propose a semidefinite programming for linear discriminants r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2017-10, Vol.53 (5), p.2372-2384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyperspectral data classification has shown potential in many applications. However, a large number of spectral bands cause overfitting. Methods for reducing spectral bands, e.g., linear discriminant analysis, require matrix inversion. We propose a semidefinite programming for linear discriminants regularized difference (SLRD) criterion approach that does not require matrix inversion. The paper establishes a classification error bound and provides experimental results with ten methods over six hyperspectral datasets demonstrating the efficacy of the proposed SLRD technique. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2017.2696236 |