An Efficient Subcarrier Allocation Method for AeroMACS-Based Communication Systems

The work presented here deals with an IEEE 802.16e-based system for airport surface communications, named AeroMACS. Such a system has been proposed as a possible solution to satisfy the growing demand of new communication services and needs of next generation air traffic management (ATM) systems. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2013-04, Vol.49 (2), p.786-797
Hauptverfasser: Bartoli, G., Fantacci, R., Marabissi, D., Micciullo, L., Fossi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The work presented here deals with an IEEE 802.16e-based system for airport surface communications, named AeroMACS. Such a system has been proposed as a possible solution to satisfy the growing demand of new communication services and needs of next generation air traffic management (ATM) systems. By focusing on a specific airport environment, a resource allocation algorithm is proposed that allows the communication system capacity to be increased by exploiting the tap correlation related to each user communication channel. Optimal resource allocation using tap correlation has been previously shown to have a significant gain with respect to different alternatives, but also suffers from severe computational complexity. In order to relax this drawback, a novel suboptimal method is proposed that allows the implementation complexity to be lowered and the derivation of channel parameters to be made affordable, in particular in the case of fast varying propagation conditions or high estimation latency. The performance of the proposed algorithm is validated by comparisons with those achieved by the optimal approach and alternative solutions under different application conditions and users speed values. The final result shown here is a significant performance improvement for the proposed algorithm with respect to standard alternatives.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2013.6494381