Exact Bayesian and particle filtering of stochastic hybrid systems

The standard way of applying particle filtering to stochastic hybrid systems is to make use of hybrid particles, where each particle consists of two components, one assuming Euclidean values, and the other assuming discrete mode values. This paper develops a novel particle filter (PF) for a discrete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2007-01, Vol.43 (1), p.55-70
Hauptverfasser: Blom, H.A.P., Bloem, E.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The standard way of applying particle filtering to stochastic hybrid systems is to make use of hybrid particles, where each particle consists of two components, one assuming Euclidean values, and the other assuming discrete mode values. This paper develops a novel particle filter (PF) for a discrete-time stochastic hybrid system. The novelty lies in the use of the exact Bayesian equations for the conditional mode probabilities given the observations. Therefore particles are needed for the Euclidean valued state component only. The novel particle filter is referred to as the interacting multiple model (IMM) particle filter (IMMPF) because it incorporates a filter step which is of the same form as the interaction step of the IMM algorithm. Through Monte Carlo simulations, it is shown that the IMMPF has significant advantage over the standard PF, in particular for situations where conditional switching rate or conditional mode probabilities have small values
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2007.357154