An approach to knowledge-aided covariance estimation

This paper introduces a parametric covariance estimation scheme for use with space-time adaptive processing (STAP) methods operating in heterogeneous clutter environments. The approach blends both a priori knowledge and data observations within a parameterized model to capture instantaneous characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2006-07, Vol.42 (3), p.1021-1042
Hauptverfasser: Melvin, W.L., Showman, G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a parametric covariance estimation scheme for use with space-time adaptive processing (STAP) methods operating in heterogeneous clutter environments. The approach blends both a priori knowledge and data observations within a parameterized model to capture instantaneous characteristics of the cell under test (CUT) and reduce covariance errors leading to detection performance loss. We justify this method using both measured and synthetic data. Performance potential for the specific operating conditions examined herein include: 1) averaged behavior within roughly 2 dB of the optimal filter, 2) 1 dB improvement in exceedance characteristic relative to the optimal filter, highlighting improved instantaneous capability, and 3) impervious ness to corruptive target-like signals in the secondary data (no additional signal-to-interference-plus-noise ratio (SINK) loss, compared with 10 dB or greater loss for the standard STAP implementation), with corresponding detections comparable to the optimal filter case
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2006.248216