On the Arithmetic and Geometric Fusion of Beliefs for Distributed Inference
We study the asymptotic learning rates of belief vectors in a distributed hypothesis testing problem under linear and log-linear combination rules. We show that under both combination strategies, agents are able to learn the truth exponentially fast, with a faster rate under log-linear fusion. We ex...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-04, Vol.69 (4), p.1-16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic learning rates of belief vectors in a distributed hypothesis testing problem under linear and log-linear combination rules. We show that under both combination strategies, agents are able to learn the truth exponentially fast, with a faster rate under log-linear fusion. We examine the gap between the rates in terms of network connectivity and information diversity. We also provide closed-form expressions for special cases involving federated architectures and exchangeable networks. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2023.3330405 |