On the Arithmetic and Geometric Fusion of Beliefs for Distributed Inference

We study the asymptotic learning rates of belief vectors in a distributed hypothesis testing problem under linear and log-linear combination rules. We show that under both combination strategies, agents are able to learn the truth exponentially fast, with a faster rate under log-linear fusion. We ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-04, Vol.69 (4), p.1-16
Hauptverfasser: Kayaalp, Mert, Inan, Yunus, Telatar, Emre, Sayed, Ali H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic learning rates of belief vectors in a distributed hypothesis testing problem under linear and log-linear combination rules. We show that under both combination strategies, agents are able to learn the truth exponentially fast, with a faster rate under log-linear fusion. We examine the gap between the rates in terms of network connectivity and information diversity. We also provide closed-form expressions for special cases involving federated architectures and exchangeable networks.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2023.3330405